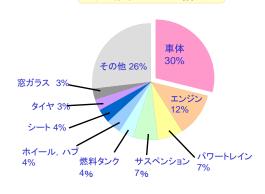
自動車の軽量化と衝突安全性向上の ための高張力鋼板のプレス成形技術


豊橋技術科学大学 森謙一郎

- 1) 高張力鋼板の冷間プレス成形
- 2) ホットスタンピング

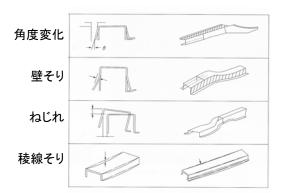
- 1. 高張力鋼板
- 2. スプリングバック
- 3. 伸びフランジ
- 4. 割れ
- 5. 焼付き
- 6. しわ
- 7. ホットスタンピング

自動車の重量構成

自動車用板材の比較

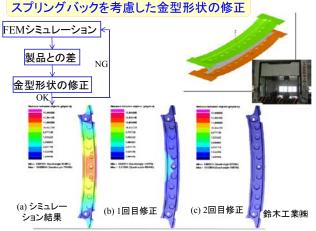
板材	引張強さ	比重	比強度	コスト(1kg 当り)	生産量
ウルトラハイテ ン	980 ~ 1470MPa	7.8	126 ~ 188MPa	100円程 度	鉄:12億 ton
従来ハイテン	490 ∼ 790MPa	7.8	63 ~ 101MPa		
軟鋼板 SPCC	340MPa	7.8	44MPa		
アルミ合金板 A6061(T6処理)	310MPa	2.7	115MPa	500円~ 600円	アルミ: 3400万ton
マグネシウム 合金板 AZ31	270MPa	1.8	137MPa	3000円程度	マグネ:60 万ton
PAN系炭素繊 維	2000MPa~ 5000MPa	1.6		2000円程度	炭素繊維: 2万ton

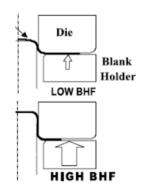
自動車車体への高張力鋼板の適用

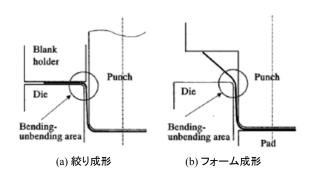

トヨタクラウン, 骨格部 材の45%が高張力鋼板

骨格部材:36%

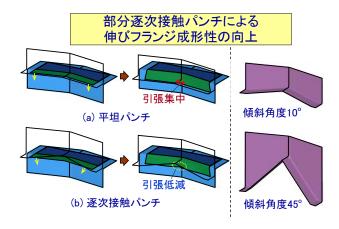
- 1. 高張力鋼板
- 2. スプリングバック
- 3. 伸びフランジ
- 4. 割れ
- 5. 焼付き
- 6. しわ
- 7. ホットスタンピング

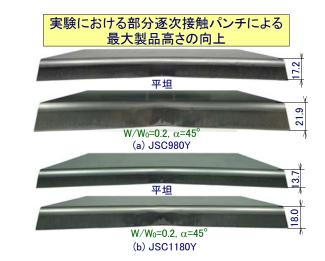

超高張力鋼板の形状凍結性


高張力鋼板の曲げにおけるスプリングバック

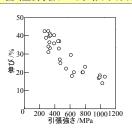

有限要素シミュレーションを用いた スプリングバックを考慮した金型形状の修正

しわ押え力制御によるスプリングバックの防止


フォーム成形によるスプリングバックの防止



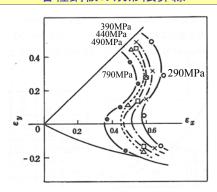
- 2. スプリングバック
- 3. 伸びフランジ
- 4. 割れ
- 5. 焼付き
- 6. しわ
- 7. ホットスタンピング

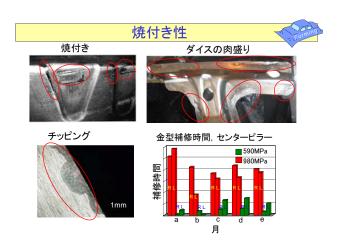


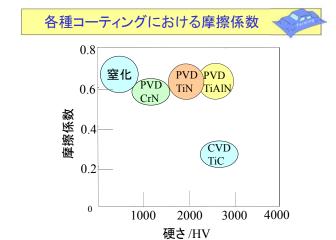
1. 高張力鋼板

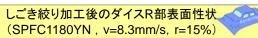
- 2. スプリングバック
- 3. 伸びフランジ
- 4. 割れ
- 5. 焼付き
- 6. しわ
- 7. ホットスタンピング

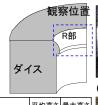
各種鋼板の深絞り成形性




(a) 270 MPa, 55 mm (b) 590 MPa, 40 mm (c) 980 MPa, 25mm


各種鋼板の成形限界線





- 1. 高張力鋼板
- 2. スプリングバック
- 3. 伸びフランジ
- 4. 割れ
- 5. 焼付き
- 6. しわ
- 7. ホットスタンピング

(a) コーティングなし

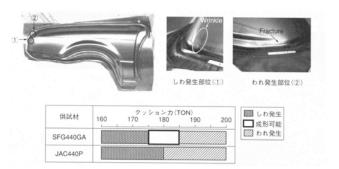
(b) TiN(CVD)

(d) VC

- 1. 高張力鋼板
- 2. スプリングバック
- 3. 伸びフランジ
- 4. 割れ
- 5. 焼付き
- 6. しわ
- 7. ホットスタンピング

各種鋼板のプレス成形におけるしわ 🤜

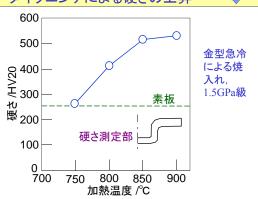
(a) 270 MPa


(b) 590 MPa

(c) 980 MPa

プレス成形におけるしわの予測 T. 元点2 Omm L. F. 利に仮滅率2.4.5% (a) 実験 (b) シミュレーション

しわと割れ

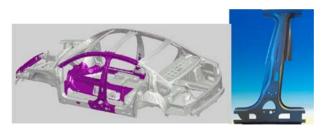

- 1. 高張力鋼板
- 2. スプリングバック
- 3. 伸びフランジ
- 4. 割れ
- 5. 焼付き
- 6. しわ
- 7. ホットスタンピング

ホットスタンピング 下死点保持 トリミング、穴抜き 穴抜き ガレス成形 後加工

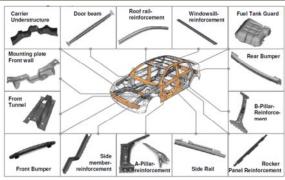
板厚1.2mmにおけるフォーム成形の スプリングバック 冷間プレス成形 590MPa 780MPa 980MP 1180MP ホットスタンピング 22MnB5

ホットスタンピングにおける ダイクエンチによる硬さの上昇

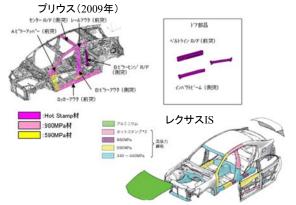
AP&T社のホットスタンピング

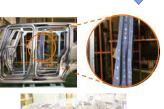


フォルクスワーゲン, パサート



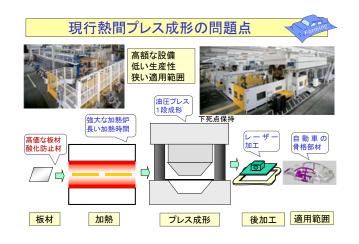
フォルクスワーゲン パサート, 骨格 部材の16%が熱間プレス成形


ドイツ ベンテラー社における ホットスタンピング成形品



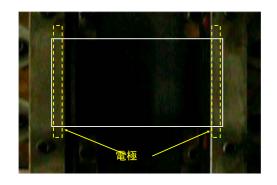
トヨタにおけるホットスタンピングの適用▼

ホンダN BOXのセンターピラー



ホットスタンピング成形品の生産量 550 450 million 500 per year (\$u0 450 400 350 400 350 400 æ 250 200 95 millior per year <u>원</u> 150 8 million (2007) Parts 100 50 per year (1987) per year (1997) 142 lines in 2011, around the world 2007 '08 '09 '10 '11 '12 '13 1987 1997 Ref: Hund 2011, Belanger 2011.

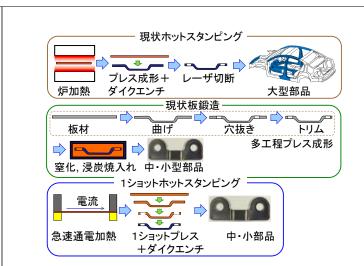
ホットスタンピングの長所



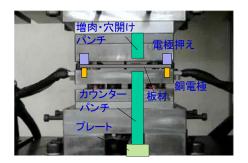
- 成形荷重低下
- スプリングバックなし
- 成形性増加
- 1.5GPa級成形品

980℃における通電加熱ハット曲げ成形

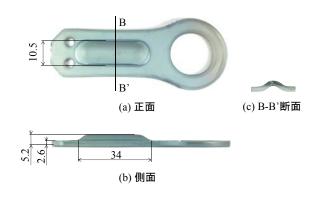
通電加熱ホットスタンピング成形品

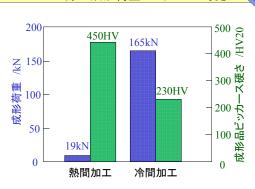

連続通電加熱ホットスタンピング

板材搬送 通電加熱, 成形+ダイクエンチ


材料取出し

1ショットホットスタンピング


1ショットホットスタンピング

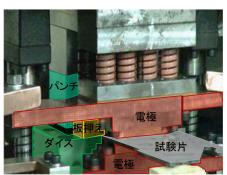


ホットスタンピングによるビード加工 をされた自動車シート用部品

ビード部の成形荷重とビッカース硬さ

部分通電加熱を用いたギア部品の 順送ホットスタンピング

現状板鍛造, 順送成形


焼入れ

焼入れ工程省略, 部分加熱

局部通電加熱打抜き

成形されたギア部品

(b) ギア部

スマートホットスタンピングの開発

通電加熱+サーボプレス

- コンパクトな装置
- 低コスト
- 高生産性

課題:矩形板材,安定加熱,加熱と成形サイクル,金型,冷却,潤滑,後加工,強度と遅れ破壊,酸化防止,チタン,アルミニウム