超高強度鋼部材のプレス成形

豐橋技術科学大学 森謙一郎 http://plast.me.tut.ac.jp/

自動車の燃費を向上するために軽量化が望まれており,高張力鋼板の使用が急増している.引張り強さが1GPa以上の超高張力鋼板も使用されるようになってきているが,プレス成形が困難である.本講演では,超高張力鋼部材のプレス成形において,スプリングバック,伸びフランジ,割れ,焼付き,しわ,せん断加工,テーラードブランク,接合,ホットスタンピングなどについて紹介する.

超高強度鋼部材のプレス成形

豐橋技術科学大学 森謙一郎

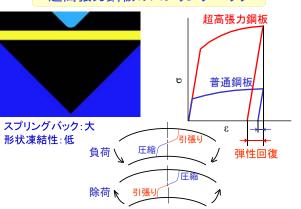
- 軽量自動車部品の成形 -

100kg軽量:1km/l燃費向上

軽量材料の成形

- 超高張力鋼板:ウルトラハイテン(7.8)
- アルミニウム(2.7),マグネ(1.8),チタン(4.5) 軽量化部品の成形
- 中空部品
- 一体化成形 シミュレーション技術
- 有限要素法

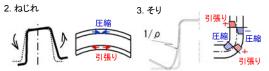
自動車用板材の比較

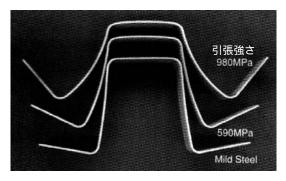

板材	引張強さ	比重	比強度	コスト(1kg 当り)	生産量
ウルトラハイテ ン	980 ∼ 1470MPa	7.8	126 ~ 188MPa	100円程 度	鉄:12億 ton
従来ハイテン	490∼ 790MPa	7.8	63 ~ 101MPa		
軟鋼板 SPCC	340MPa	7.8	44MPa		
アルミ合金板 A6061(T6処理)	310MPa	2.7	115MPa	500円~ 600円	アルミ: 4000万ton
マグネシウム 合金板 AZ31	270MPa	1.8	137MPa	3000円程 度	マグネ:60 万ton
PAN系炭素繊 維	2000MPa ~ 5000MPa	1.6		2000円程度	炭素繊維: 2万ton

1. スプリングバック

- 2. 伸びフランジ
- 3. 割れ
- 4. 焼付き
- 5. しわ
- 6. せん断加工
- 7. テーラードブランク
- 8. 接合
- 9. ホットスタンピング

超高張力鋼板のスプリングバック


超高張力鋼板の形状凍結性


超高張力鋼板の形状凍結性

1. スプリングバック

高張力鋼板のハット曲げにおけるスプリングバック

神鋼

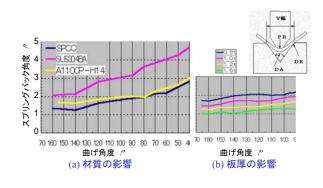
スプリングバック

スプリング*バッ*ク*∆θ*

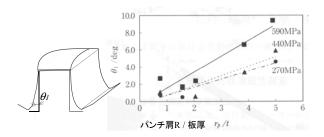
$$\Delta\theta = \frac{M}{EI}\theta\,R \approx \frac{3\sigma\theta\,R}{E\,t}$$

M:曲げモーメント (*bt* d4), 大 *E*:ヤング率, 小

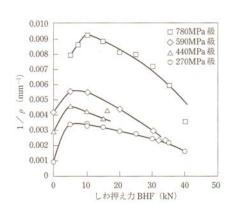
/: 断面2次モーメント (bh³/12), 小


θ:曲げ角, 大

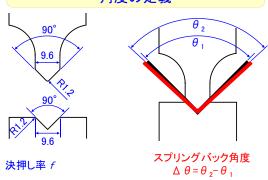
R:曲げ半径, 大

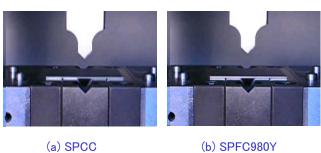

 σ : 変形抵抗, 大

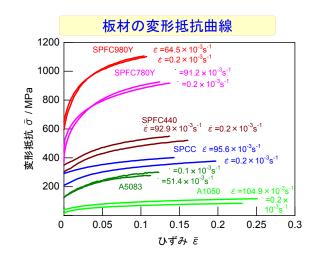
t: 板厚, 小

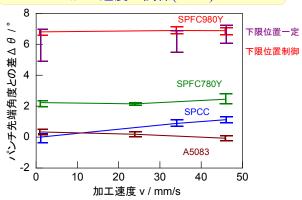

V曲げにおけるスプリングバックに及ぼす 材質および板厚の影響

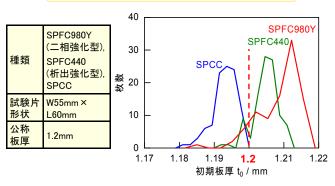
ハット曲げにおけるスプリングバックに及ぼす 材質の影響


ハット曲げにおけるそりに及ぼすしわ押え力の影響

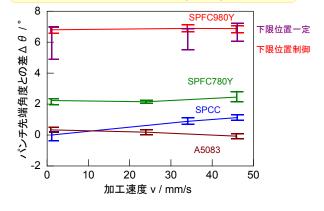

直動式サーボプレス(80tonf)


V曲げ加工における金型形状, 決押し率・ 角度の定義

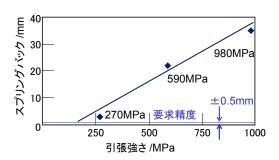

V曲げの変形挙動


C (b) SPFC980Y v=24mm/s, f=0%, T=0.5s

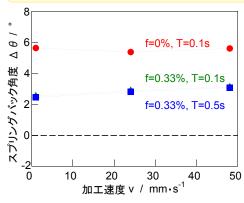
V曲げにおけるパンチ先端角度との差と 加工速度の関係(f=0%)

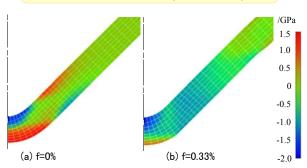


試験片の種類, 初期板厚のばらつき

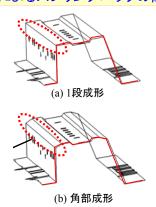


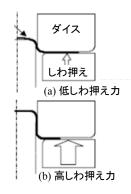
標本数:各100枚

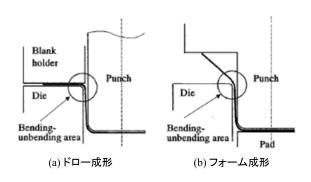

V曲げにおけるパンチ先端角度との差と 加工速度の関係(f=0%)

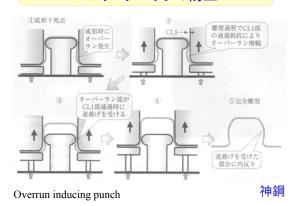

スプリングバックと引張強さの関係

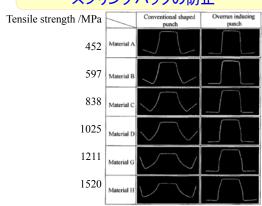
V曲げにおける決押しによるスプリング バックの低減 (980MPa)

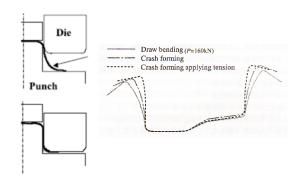

V曲げの決押しによる除荷前の板幅方向 応力分布への影響(SPFC980Y)

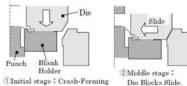

側壁ビードによるスプリングバックの防止


面取りによるスプリングバックの防止


しわ押え力制御によるスプリングバックの防止


フォーム成形によるスプリングバックの防止

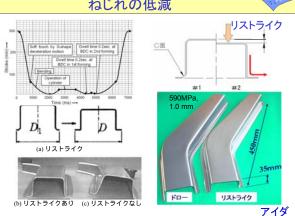

オーバーラン誘発パンチによるスプリングバックの防止


オーバーラン誘発パンチによる スプリングバックの防止

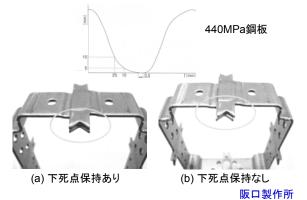
リストライクによるスプリングバックの防止

スライドロックドローによるスプリングバックの防止

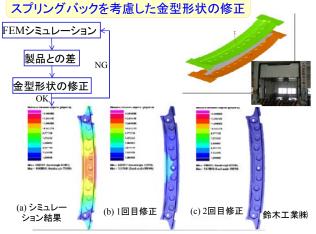
3 Latter stage : The wall is applied tension.



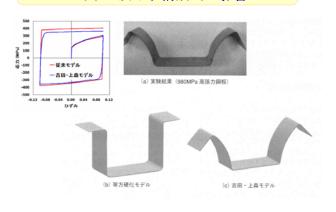
(a)ドロ一成形


(b) スライドロックドロ一成形

リストライクによるスプリングバックと ねじれの低減



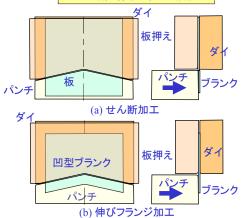
下死点保持による スプリングバックの低減



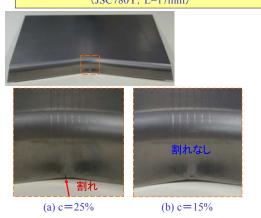
有限要素シミュレーションを用いた

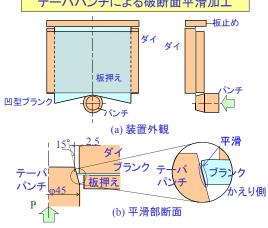
有限要素シミュレーションにおけるスプリング バックに及ぼす構成式の影響

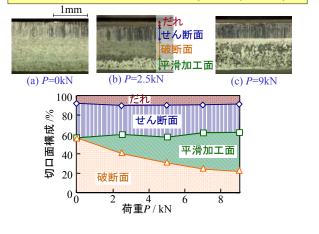
1. スプリングバック

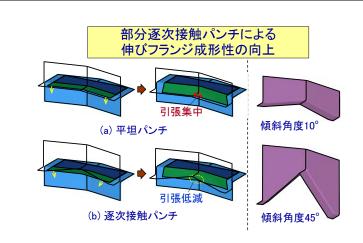

2. 伸びフランジ

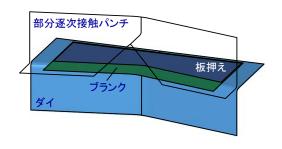
- 3. 割れ
- 4. 焼付き
- 5. しわ
- 6. せん断加工
- 7. テーラードブランク
- 8. 接合
- 9. ホットスタンピング


プレス成形におけるフランジ割れ


せん断と伸びフランジ成形


フランジ割れにおよぼすせん断クリアランス比の影響 (JSC780Y, L=17mm)


テーパパンチによる破断面平滑加工


平滑化後の切口面の構成比 (JSC780, c=20%)

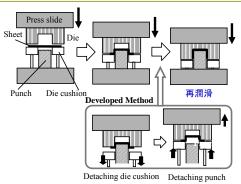
部分逐次接触パンチによる伸びフランジ曲げ成形

逐次接触パンチによる長手方向の引張りひずみ分布 (JSC780, α=10°, W/W₀=1.0, L=18mm) 逐次接触パンチ ダイ 長手方向引張りひずみ 0.5 0.4 0.3 0.2 0.1 0

実験における部分逐次接触パンチによる 最大製品高さの向上

- 1. スプリングバック
- 2. 伸びフランジ
- 3. 割れ
- 4. 焼付き
- 5. しわ
- 6. せん断加工
- 7. テーラードブランク
- 8. 接合
- 9. ホットスタンピング

各種鋼板の深絞り成形性


(a) 270 MPa, 55 mm (b) 590 MPa, 40 mm (c) 980 MPa, 25mm

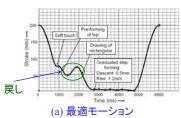
980MPa級超高張力鋼板の 曲げ加工における割れ

成形途中に工具から板材を外すことによる、 深絞り性の向上

JFE

振動プレス成形:摩擦の低減

高張力鋼板 成形限界の向上


(a) 通常

(b) 振動

JFE

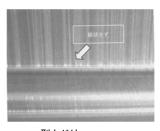
深絞り加工における割れの防止

(b) クランクモーション (c) 最適モーション

アイダ

段付き容器の深絞り加工における 割れの防止

アイダ


- 2. 伸びフランジ
- 3. 割れ
- 4. 焼付き
- 5. しわ
- 6. せん断加工
- 7. テーラードブランク
- 8. 接合
- 9. ホットスタンピング

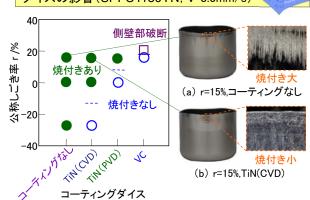
しごき絞り加工における焼付き

超高張力鋼プレス成形車体部品

型かじり

使用したコーティングダイス

ーティングなし



TiN(CVD) TiN(PVD) VC TD-VC皮膜:900-1000℃で塩浴処理

しごき絞り加工の耐焼付き性に及ぼすコーティング ダイスの影響(SPFC1180YN, v=8.3mm/s)

高張力鋼板のプレス成形用金型 SLD-MAGIC

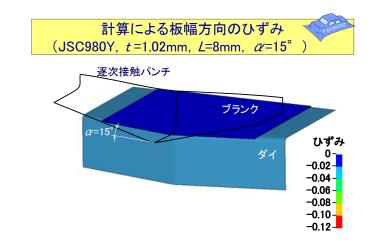
日立金属

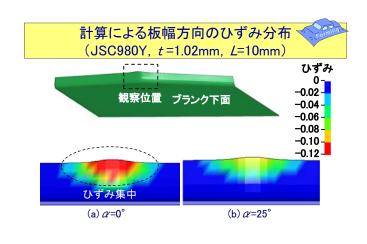
金型の焼付き (a) SKD (b) SLD-MAGIC

日立金属

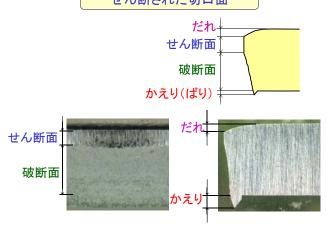
生産性:加工速度の制御


焼付き防止:温度の低減

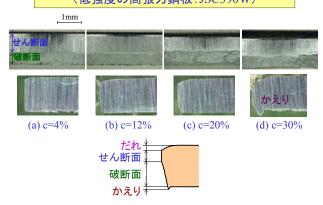

歯形ドラムの板鍛造


25%減速 低速 (低速) (10 mm) (10 m

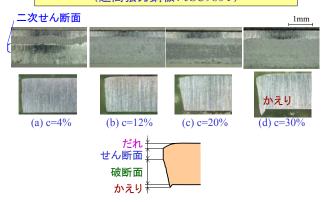
- 1. スプリングバック
- 2. 伸びフランジ
- 3. 割れ
- 4. 焼付き
- 5. しわ
- 6. せん断加工
- 7. テーラードブランク
- 8. 接合
- 9. ホットスタンピング

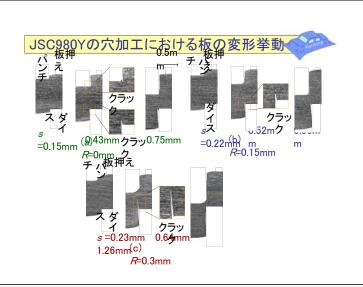


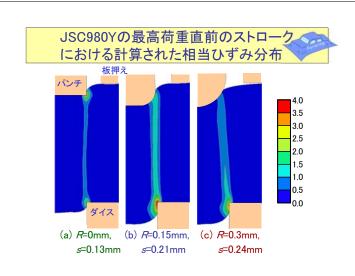
実験における逐次接触パンチによる 限界成形品高さ(*t* =1.22mm)

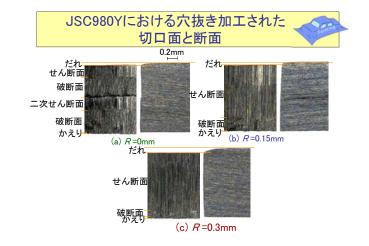


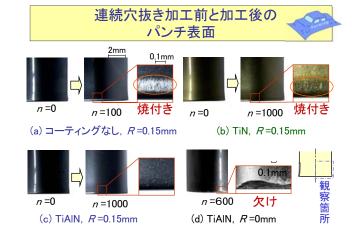
- 1. スプリングバック
- 2. 伸びフランジ
- 3. 割れ
- 4. 焼付き
- 5. しわ
- 6. せん断加工
- 7. テーラードブランク
- 8. 接合
- 9. ホットスタンピング

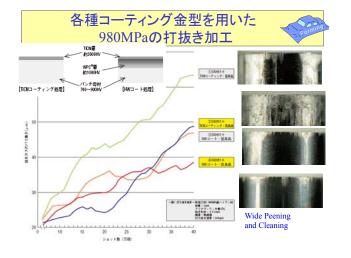

せん断された切口面

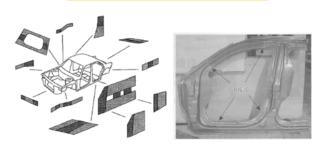

せん断切口面におよぼすクリアランス比の影響 (低強度の高張力鋼板:JSC390W)




せん断切口面におよぼすクリアランス比の影響 (超高張力鋼板: JSC980Y)







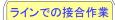
- 1. スプリングバック
- 2. 伸びフランジ
- 3. 割れ
- 4. 焼付き
- 5. しわ
- 6. せん断加工
- 7. テーラードブランク
- 8. 接合
- 9. ホットスタンピング

テーラードブランク

Tailored blanks, 590, 780 and 980MPa

テーラードブランク

1. スプリングバック


- 2. 伸びフランジ
- 3. 割れ
- 4. 焼付き
- 5. しわ
- 6. せん断加工
- 7. テーラードブランク
- 8. 接合
- 9. ホットスタンピング

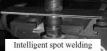
セルフピアシングリベットによる 高張力鋼板とアルミニウム合金板の接合

・リベット ・ダイ

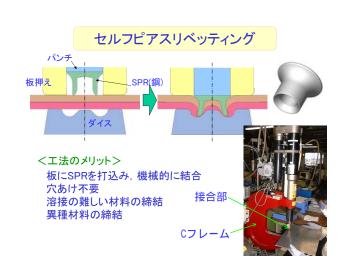
∙板組

アルミニウム板の接合

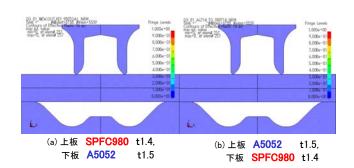
アルミニウム:溶接性 が低い


セルフピアシングリベット Audi_A2:アルミ自動車

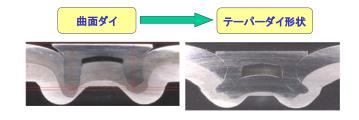
高張力鋼板の溶接



Laser-arc hybrid welding



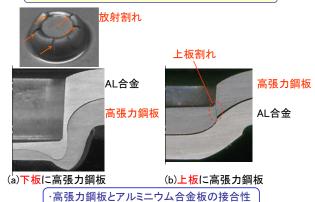
アルミニウム板と高張力鋼板の接合


高張力鋼板 ・高強度, 高硬度 ・延性小 ・ダイ形状の最適化 (ダイ径, 深さ)

リベット割れ リベット折れ

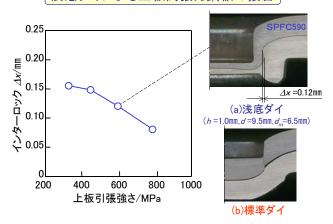
有限要素シミュレーション

ダイ形状の最適化



上板: SPFC980, 1.4mm, 下板: A5052, 1.5mm

メカニカルクリンチングによる 高張力鋼板とアルミニウム合金板の接合

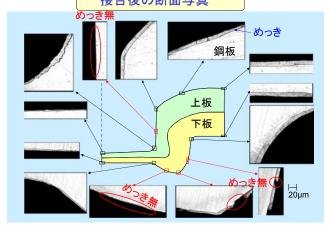

高張力鋼板とアルミニウム合金板の接合

・高張力鋼板とアルミニウム合金板の接合性 ・ダイ形状の改善による接合性の向上

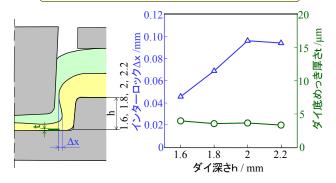
平底ダイによる下板高張力鋼板の接合 0.25 平底ダイ 0.20 - 0.15 - 0.10 - 0.05 *∆x* =0.14mm (a)平底ダイ (d=8.25mm,h=1.8mm) 標準ダイ 0 200 400 600 800 1000 下板引張強さ/MPa

「浅底ダイによる上板高張力鋼板の接合」

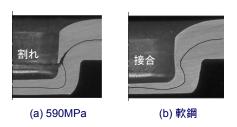
メカニカルクリンチングによる 表面処理高張力鋼板の接合

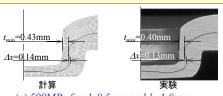

(b)標準ダイ

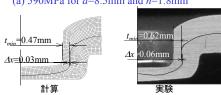
抵抗スポット溶接 電極の寿命:短い コーティング厚さ:小さい



メカニカルクリンチング

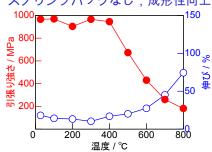

接合後の断面写真


実験によるΔx, tへ及ぼすダイ深さhの影響


従来ダイによる590MPa 高張力鋼板の接合

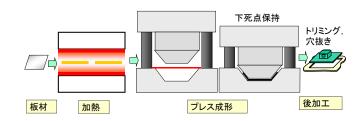
工具形状の修正

(a) 590MPa for d=8.5mm and h=1.8mm

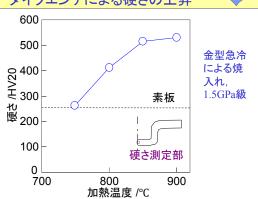

(b) 780MPa for d=8.5mm and h=1.5mm

- 1. スプリングバック
- 2. 伸びフランジ
- 3. 割れ
- 4. 焼付き
- 5. しわ
- 6. せん断加工
- 7. テーラードブランク
- 8. 接合
- 9. ホットスタンピング

超高張力鋼板の高温引張り特性



ホットスタンピング:成形荷重低下, スプリングバックなし、成形性向上


ホットスタンピング

ホットスタンピングにおける ダイクエンチによる硬さの上昇

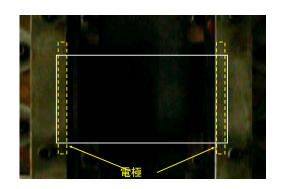
ホットスタンピング

ホットスタンピング

フォルクスワーゲン, パサート

フォルクスワーゲン パサート, 骨格部材の16%が熱間プレス成形

Audi A7 Sportback Pルミニウム板材 Pルミニウム鋳造材 Pルミニウム押出し材 ホットスタンピッグ 冷間プレス成形

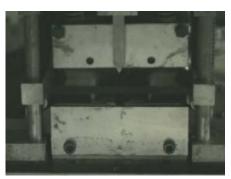


通電加熱の映像

通電加熱とサーボプレスの連動

高速加熱・高速成形:

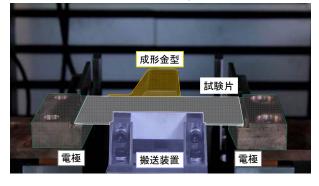
通電電源

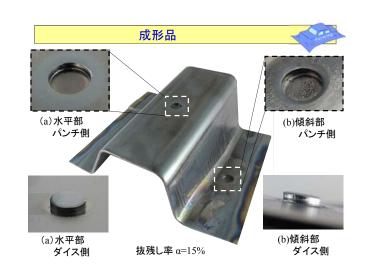

サーボプレス

サーボプレス

通電加熱ハット曲げ成形装置 実験条件 通電電圧:10V 板サイズ:130mm×20mm 電極中心間距離:120mm 通電 (0.2秒) プレス 変圧器 3.5秒保持 200V 60Hz

900 ℃における通電加熱ハット曲げ成形




900℃における通電加熱ハット曲げ成形

抜残し機構を取り入れた成形金型 平端パンチ パンチ突出し量 上型 水平部 Ø6mm 1.5mm ボタンダイ Ø6mm <u></u>1.5mm 0 下型 傾斜パンチ Ø6mm 傾斜部角度 10° 傾斜部ダイス穴 Ø6mm

成形とクリアランスなし熱間抜残し加工

世ん断面 ・ 破断面 ・ 破断面 ・ なが面 ・ なが面

破断面かえり

断面

(b)傾斜部

ピンによる抜取り加工後の切口面と切口断面

- 1. スプリングバック
- 2. 伸びフランジ
- 3. 割れ
- 4. 焼付き
- 5. しわ
- 6. せん断加工
- 7. テーラードブランク
- 8. 接合
- 9. ホットスタンピング

